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Abstract 

The free-particle Dirac wave func t ion  ~p(x)hasbeen generalized to q~(x)~a(z). Here, z 
denotes  a set o f  three complex coordinates,  called internal  coordinates,  in an  abstract  complex 
three-dimensional  space, called internal space; a runs  from 1 to 3; and ~a(z) is assumed to con- 
tain a representat ion o f  the state of  a quark triplet. The mass in the free-particle Dirac equat ion 
is replaced by a second-order operator ~a b operating on ~a(z). The Dirac equat ion  so modified 
is assumed to include a descript ion of a free quark triplet. Subsequent ly ,  symmetry-preserving 
interact ions between two quark triplets are introduced.  Two SU 3 symmetry-breaking inter- 
actions, one t ransforming like the  eighth c o m p o n e n t  o f  an SU 3 octet  vector and the  other  
like the  SU 3 charge operator,  are also introduced.  A similarly generalized Bethe--Salpeter 
equat ion  in the  ladder approximat ion  was obtained.  This  equat ion has  been treated in 
greater detail in an accompanying  paper in which the  Gel l -Mann-Okubo formula  for 
psuedoscalar  mesons  was derived with the  coefficients de termined by given relations. 
Then,  spherical coordinates  and corresponding spherical harmonics  in the  internal space 
are introduced.  Finally, the  equat ion  for a one-quark sys tem is briefly treated. 

1. Introduction 

Quantum mechanics, formulated about half a century ago, has indeed served 
us very well in the field of atomic physics. Quantum field theory, formulated 
shortly afterwards, together with the renormalization technique introduced 
about a quarter a century ago has been spectacularly confirmed by experiments 
in the case of electromagnetic interactions, at the present time down to 10 -is 
cm, a distance considerably smaller then the length scale of a nucleus. 

When applied to nuclear phenomena and strong interactions among the 
so-called elementary particles, quantum theory has proved to be far less 
satisfactory in accounting for experiments, both qualitatively and quantita- 
tively. There are several reasons for this. In the first place, we do not have an 
accurate or even adequate representation of the strong interaction in spite of 
a great wealth of experimental data, as we do in the case of the electromagnetic 
interaction. Thus, although we know the strong interaction phenomenologically, 
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qualitatively, and semiquantitatively, there are features of  strong interactions 
that cannot be naturally fitted into the quantum theoretical description of 
today. Secondly, the strong interaction strength is greater than unity; and the 
perturbational approach, which is possible in quantum electrodynamics and is 
essential in bringing it into contact with experiments, in principle fails. For the 
above reasons, the dispersion-relations approach of quantum theory to strong 
interactions was devised to complement the field theoretical approach. In spite 
of its partial success, the dispersion-relations approach is to be considered as 
an auxiliary theory in our search for a more adequate description of the strong 
interaction if our belief is that such a description is to take the form of a 
system of partial differential, or differential integral, equations. The last belief 
is based upon our experiences in all of the different basic branches of physics. 
Thirdly, particle masses are to be introduced as parameters into quantum 
theory. This is practically manageable as long as the number of different 
masses is small. In an elementary particle interaction, however, a great number 
of particles with different masses can be produced. To account for such inter- 
actions with quantum, theory, the large number of different masses causes the 
theory to assume a rather clumsy appearance. 

For these reasons, at least, it is evident that quantum theory must be suit- 
ably modified or wholly replaced by another theory if we are to account for 
strong interactions more satisfactorily. The purpose of this paper is to present 
a possible such theory. In the search for such a more satisfactory theory, one 
may be guided by the above discussion and look for a system of partial 
differential, or differential integral, equations. The great success of  quantum 
electrodynamics further suggests that at least some basic features of quantum 
field theory have fundamental importance and hold as well for interactions 
other than the electromagnetic one. This is confirmed by the partial success 
of quantum field theory applied to strong interactions. Therefore, quantum 
theory will be used as a starting point and be suitably modified or generalized. 

Another line of approach to account for our experiences in nuclear and 
strong interaction phenomena began in the 1930's when the isospin formalism, 
associated with the mathematical group SU2, was proposed and turned out to 
be highly successful in classifying these phenomena. Generalization of the 
isospin concept to include strangeness or hypercharge and the corresponding 
generalization of SU2 to SU3 took place during the 1950's and early 1960's. 
Based on these generalizations, Gell-Mann (1962) and N~eman (1961) 
showed that essentially all the hadrons then known could be fitted into an 
SU3 classification scheme. Moreover, it was proposed that the masses of  these 
particles were to be considered as eigenvalues of a mass operator operating 
on a set of functions representing an irreducible SU3 multiplet. In particular, 
the mass operator was assumed to consist of an SUa singlet term and a term 
transforming like the eighth component of an SU 3 octet vector (Okubo, 1962). 
In this manner, the Gell-Mann-Okubo formula relating the masses of 
particles within a given SU3 multiplet was deduced and agreed well with 
experimental data under certain assumptions. A similar set of relations, con- 
cerning the electromagnetic sptittings in SU3 multiplets only, was also derived 
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(Coleman and Glashow, 1961) and likewise agreed well- 
data. Along this line, Gell-Mann (1964) and Zweig (1% 
tially all the hadrons then known could be considered to c 
combinations of a fundamental triplet, called quarks, much h, 
mental doublet, proton and neutron, which make up atomic nuc,. 

The SU3 and quark formalism is so practical and powerful that it_ 
that it has become of fundamental importance to strong-interaction ph) 
By its very nature, however, the formalism, apart from spin, does not cont ,  
any aspect of space-time mechanics of strong interactions. Since the experi- 
mental data are functions of space-time, the formalism alone is obviously 
insufficient in accounting for hadron interactions. 

In the search for a more satisfactory theory for strong interactions, there- 
fore, it appears natural to try to combine quantum theory and the SU3 and 
quark formalism in a suitable way. The above suggestion that quantum theory 
is to provide a starting point and is to be suitably generalized can now be 
made more specific; the generalization consists of including the SU3 and quark 
formalism or its equivalent in a suitable way. In particular, the suggestion 
leading to the Gell-Mann-Okubo formula, that masses are eigenvalues of a 
mass operator, has been substantially followed. Further, use has been made 
of the hypothesis that quarks, formally represented by a triplet ~a, where a 
runs from 1 to 3, or included in such a formal representation for the time 
being, are the fundamental constituents from which all hadrons are built. 

Since quarks have spin ½, Dirac's equation for a free particle wilt be used 
as the starting point. The Dirac wave function is associated with a triplet ~a 
representing the quarks, and the mass term in the Dirac equation is replaced 
by a suitable operator mop operating on ~a. In this process, an abstract three- 
dimensional complex space, called internal space and denoted by M3, together 
with a set of three complex coordinates, called internal coordinates and 
denoted by z, are introduced. ~a then takes the meaning ~a(z) and mop takes 
the form of a second-order tensor operator bab. These steps are carried out in 
Section 2 and the resulting equation is assumed to hold for a free-quark 
triplet or simply a free quark. 

In Section 3, a quark is assumed to interact with another quark with known 
state. Interactions in space-time as well as in the internal space are introduced. 
These interactions, however, preserve both the Lorentz and the U3 invariance 
of the equations, tn Section 4, interactions breaking the SU3 invariance of the 
equations are introduced. In particular, an interaction term in the internal 
space transforming like the eighth component of an SU3 octet vector is intro- 
duced following the line of Okubo (t962). 

In Section 5, the above generalizations are extended to the Bethe-Salpeter 
equation in the ladder approximation. The Bethe-Salpeter equation thus 
generalized for a quark-antiquark pair may account for mesons. This equation 
is treated in greater detail in an accompanying paper (Hoh, 1975) in which the 
Gell-Mann-Okubo formula for psuedoscalar mesons is derived with the 
coefficients determined by given relations. 

In Section 6, spherical coordinates and corresponding spherical harmonics 
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in the internal space are introduced following the work of  B~g and Ruegg 
(1965). 

In Section 7, the internal part of  the free-quark equation is solved for the 
case of  a single free quark. Solution is also given when an SU 3 singlet inter- 
action function arising from a point source fixed in the internal space is 
included. 

2. The Free-Quark Equation 

The free-particle Dirac equation reads 

(iv"a# - m) ~ (x) = o (2. l)  

Since one may anticipate that the triplet ~a will be involved in a generalization 
of (2.1), (2.1) is rewritten in the spinor form of van der Waerden (1929): 

i3ou~°(x) -- mxU(x) = O, i3~xV(x) + rmlf(x) = 0 (2.2) 

in order to facilitate a comparison between ~(x)  and ~a. ~?h(x ) and X~(x), on 
the one hand, and ~a, on the other, are now on equal footing: 6 = 1, 2 or 
u = 1,2 refer to the spin-up and spin-down states of  a particle and a = 1, 2 
refer to the isospin-up and isospin-down states of  the same particle neglecting 
electromagnetic interactions, a = 3 refers to a state having a nonvanishing 
strangeness. From van der Waerden (1929) and Laporte and Uhlenbeck (1931) 
we can obtain 

r / i=~2 +~4 ,  @ = - ~ 1 - ~ 3 ,  X 1 = ~ 1 - ~ 3 ,  X 2 = ~ 2 - t ~ 4  (2.3) 

\x l~  x22/ xl +ix2 Xo x3 / ,  \a~i az i ]  +lax2 ax3 g X o /  

(2.4) 

X u transforms like a contravariant spinor or doublet function and is analogous 
to ~a, which transforms as a contravariant triplet function. The covariant spinor 
7~ is defined by X~ = e~oX a, where 

O is a totally antisymmetric tensor. Similarly, r/ transforms like the complex 
cQnjugate of  a contravaria~t spinor and rT6 like that o f  a covariant spinor. 
ri ° = e°V~?b, r/6 = e~/,rF, e ~r~ has the same form as e°~,and ebb as e~rv in (2.6). 
The physical quantities xc~ and physical operators 3a~ transform like a mixed 
tensor of  second rank. Entities like xc~, x/}, 3a, and 3~ do not exist in the physical 
world. 
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The generalization of (2.2) to account for a free quark makes use of  the 
fact that a triplet ~a has been assigned to represent quarks and of the earlier 
suggestion that m is the eigenvalue of  an operator mop operating on a set of  an 
irreducible S U  3 multipl.et. In such a generalization, ~a is obviously to be 
associated with X ~ or r/° in a multipticative manner. It is natural to assume that 
~a can represent an irreducible S U  3 multiptet, namely, an S U  3 triplet; mop then 
obviously operates on ~a The formal form of  mop is chosen according to the 
following discussion. In classical mechanics, both the momenta  p~, or in spinor 
form p r, andthe mass m are observables. In going over to quantum mechanics, 
the observable p r  was replaced by the operator i3 r ,  which operates on a 
spinor function X v introduced in this connection. The observable m remained 
unchanged. Presently, m is also to be replaced by an operator mop operating 
on the triplet ~a introduced. Now ~a is on equal footing with X ~, as discussed 
after (2.2). Therefore, mop is assumed .to take the formal mathematical form 
const aa b by analogy with the form iar .  Putting const = - 1 ,  (2.2) is thus 
formally generalized to 

i3 a v~a(x)~C + 3~C~bXv(X) = 0 
(2.7! 

i3~xV(x)~  i' - 3 ~ , ? # ( x )  = 0 

which possess a formal symmetry  between the spinor Greek indices and the 
triplet Latin indices. 

The existence of r/r transforming like the complex conjugate of  X r is associ- 
ated with the existence of  positive and negative energy components of  ~(x). 
The latter existence depends upon the existence of  energy which together with 
momentum form a Lorentz metric. If there were only positive energy compo- 
nents, like those appearing in the nonrelativistic case in which the metric is 
Euclidean, it would not be necessary to carry the dotted Greek indices. From 
our experience in working with the quark contravariant triplet function U, we 
have not encountered any aspect analogous to the above-mentioned positive 
and negative energy aspects. The antiquark triplet function can be represented 
by the covariant triplet ~a. Mso, as is shown later in (2.15), the metric to be 
associated with fa is not Lorentian but Euclidean. Therefore, the dots on the 
index b in (2.7) can be and are removed and (2.7) becomes 

;aa%a(x)~ ~ + a f~bx~(x )  = 0 
(2.8) 

iOvrx(x)~ b - aaa~ar~r(x) = 0 

3aa~ b is now interpreted as 

32 
3 ~  ~ b - 3Za3Zb ~a(z 1 , z 2, z 3, z l ,  z2, z3) (2.9) 

where (z 1, z 2, z 3) - z a are three complex independent variables spanning an 
abstract complex three-dimensional space M 3. Aspects of  such a space have bee~ 
discussed earlier by B4g and Ruegg (1965) and Tait (1972). ~a(zb, Zb) is 
assumed to transform as z a or as a contravariant vector or triplet in M 3. 
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The covariant space-time spinor X v is defined in terms of  the contravariant 
spinor X a by means of  the antisymmetric tensor evo in (2.6). The tensor, 
corresponding to cvo , in M 3 is the totally antisymmetric tensor Cab c where 
a, b, and c each runs from 1 to 3. There is no Cab that can be used to define a 
covariant vector z a = (zl, z2, z3) in terms o f z  b i n M  3. One is therefore free to 
define z a as the Hermitian conjugate of  za: 

= = -- (z  z 2,  3)t = [ z 2 * l  ( 2 . 1 o )  
3 \ z  3 . ]  

~a(z 1, z z, z 3, zl, z2, z3) , representing the antiquark triplet, is similarly defined 
as (~a)t and transforms like a covariant vector or za in 343. 

Consider a unitary transformation in M 3 : z~ = Tabzb. Its Hermitian con- 
jugate is za = z a' = zbTa a*. Unitarity requires that 

a f  p ~ z z a zbTba*TaCZc zbzb (2.11) 

SO that Tba*Ta e = 6b e. Using these relations, one can show that 

~Zb ~ O 
O a' =_ - - Tb a* - -  =-- Tba*O t~ (2.12) 

az'a azb azb 

and thus transforms like a contravariant vector. Similarly 

3 _ 0zb O _ O 
O'a--oza' OZa OZb Tab~-zz b-~ TabOb (2.13) 

and transforms like a covariant vector. The mass operator --Ob a "= --02/OZaOZ b 
transforms like a mixed tensor of  second rank in M 3 and is analogous to the 
energy momentum operator i06 v in (2.8), which transforms like a mixed 
tensor of  second rank in spinor space. The contracted mass operator -Oa a and 
contracted mass operator squared o~,aoJ ' transform like scalars in 343; the 
latter is analogous to the d'Alembertian operator [] in (2.5). Writing 

zl =Yl +iy> z2 =Y3 +iy4, z3 =Ys +iY6 (2.14) 

where the y ' s  are real quantities, the invariant quantity zbzb in (2.11) becomes 

6 

z~zb = ~ y 2  (2.15) 
i = 1  

showing that the metric in M a is Euclidean. 
With the interpretation (2.9) and the discussions and definitions that follow, 

(2.8) becomes well defined. The spinor free-quark equations o f  (2.8) can be 
combined to produce a bispinor free-quark equation that is the corresponding 
generalization of  (2.1), namely, 

iyuau~(x)~a(z)  + 3ba~(x)~b(Z) = 0 (2.16) 

Here, z denotes (z 1, z z, z 3, za, z> za) and will be referred to as internal coordinates 
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Similarly, M 3 can be called as internal space and U(z)  an internal quark function 
One can now say that a principle guiding the quantum mechanical equations 
(2.2) to the generalized equations including internal coordinates, (2.7), is that 
the space-time part and the internal part of the generalized equations (2.7) 
are put on equal footing. Equation (2.16) can be separated to give a space- 
time part in the form of a Dirac equation 

i')'PO,z~(x) -- mgot)(x ) = 0 (2.17) 

and an internal part in the following form 

Ot)af;b(z) + mgo{a(z) = 0 (2.18) 

Where mg o is a mass separation constant between the space-time part and the 
internal part of the free-quark equation (2.16). 

The transition from the Dirac equation for a free particle, (2.1), to the 
free-quark equation, (2.16), can be achieved by following the formal prescrip- 
tion: Multiply (2.1) by an internal quark function ~b(z) from the right, replace 
m by -0b a, and multiply the term in the parentheses that does not involve m 
by 8b a. This prescription is similar to that taking classical mechanics to quantum 
mechanics. The classical Hamiltonian for a free particle is 

PUP** - m2 = 0 (2.19) 

The prescription for going over to quantum mechanics is the following: 
Multiply (2.19) from the right by a wave function ~0(x) and replace Pu by 
i3/3xUand pU by i3/3x u. Carrying out these steps one obtains the Klein-Gordon 
equation for the same particle 

(D -- rn2)~0(x) = 0 (2.20) 

If one considers the particle to be a psuedoscalar meson, one can further 
generalize (2.20) by following a prescription similar to that applied to the 
free-particle Dirac equation (2.1) mentioned between (2.18) and (2.19): 
Multiply (2.20) by an SU3 singlet internal function r(z) from the right and 
r ep l ace  m 2 by ~aC'~)c a. Carrying out these two steps one obtains 

(ff] - @ ) ¢ ( x ) r ( z )  = (-½aetna ~ - Odoea)~(x)r(z)  = 0 (2.21) 

where 

<) - adcaJ = acC~d d (2.22) 

and (2.5) has been used. 
When going from the classical description (2.19) to the qum~tum mechanical 

description (2.20), the observables pu were replaced by operators but the 
observable m was not. When going from the quantum mechanical description 
(2.20) to the generalized description including internal coordinates, (2.2 t), 
the observable m was also replaced by an operator. All the observable 
quantities in the classical Hamiltonian (2.19), Pu and m, have now been 
replaced by operators and in that sense been put on equal footing. Equation 
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(2.21) exhibits a symmetry between its space-time part and its internal part 
just like (2.16) does. Like (2.16), (2.21) can be separated to give 

([] -mm2)~(x)  = 0 (2.23) 

( ~ - rnm2)'c(z ) = 0 (2.24) 

which are analogous to (2.17) and (2.18), respectively, rnm 2 is the mass 
separation constant between the space-time part and the internal part of the free 
meson equation (2.21). 

3. Symmetry-Preserving Interactions 

Consider a fermion with mass m and wave function ~ (x) interacting with 
another fermion with a known wave function X(X) through the exchange of a, 
say, psuedoscalar particle with mass mpo. The appropriate equations are 

(i7uOu -- m)~(x)  = i ts  Up(x)¢(x) (3.1) 

([~ -~ m2o)Up(x) = #p~(x)3,sX(X) (3.2) 

where/lp is a psuedoscalar interaction parameter. These two equations are 
generalizations of (2.1) and (2.20), respectively. 

The generalization of these equations to include internal coordinates and 
functions begins by following the prescriptions given between (2.18) and 
(2.19) for (3.1) and those between (2.20) and (2.21) for (3.2). Multiplying 
(3.1) by ~b(Z) from the right, replacing m by -3b a, and multiplying the terms 
not containing m by 6b a, one has 

iT~3,~(x)~a(z) + 3{~(x)~l~(z) = iVsUp(x)t~(x)~a(z) (3.3) 

Multiplying (3.2) by ~-(z) from the right and replacing rngo by ~ ,  one obtains 

([] -- ~ ) U p ( x ) T ( Z )  = t ipX(X)Ys  X(x)7"(z) (3.4) 

The left side of (3.3), just like that of (2.16), and the left side of (3.4), 
similar to (2.21), both possess symmetry between space-time and internal parts. 
The right sides of these equations, one representing an interaction and the 
other a source function in space-time, do not possess such a symmetry. The next 
step in the generalization consists of providing such a symmetry by completing 
the right sides of (3.3) and (3.4) in such a way that these equations become 

iv"a~,(x)~a(z) + ab%(x)~b(z) = ivsUp(x)~(x)~a(z) + ~(z)~(x)~°(z) (3.S) 

(El - @)Up(x)r(z) = Upy~(X)TsX(X)r(z) - tiofc.(z)~C(z)Up(x) (3.6) 

where ~ is an SUB singlet interaction parameter. The space-time wave function 
X(x), associated with one of the fermions, has been generalized to the quark 
triplet wave function or simply quark function X(x)fa(z)just as ~(x) was 
generalized to 6(x)~a(z) and as the psuedoscalar interaction function Up(X) 
was generalized to the psuedoscalar SU3 singlet interaction function Up(x)'r(z). 
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As with X(x), ~a(z) is assumed to be known. Equation (3.5) can be separated 
to give 

/7/sO~(x) - mg~(X) = iTsUp(x)~(x) (3.7) 

oba~b(Z) + mg~a(z) = r(z)~a(z) (3.8) 

and (3.6) to give 

(D - mp2)Up(x) = ~p~(X)ysX(X) (3.9) 

(O - mp2)r(z)  = uofc(z)fC(z) (3.10) 

Again rng appears as the separation constant between the space-time and 
internal parts of (3.5) and mp 2 that of (3.6). The mass separation constants 
are analogous to the angular momentum separation constant that arises when 
the time-independent Schr6dinger equation with a central potential is separated 
into a radial part and an angular part or to the energy separation constant that 
arises when a time-dependent Schr6dinger equation is separated into a time- 
dependent part and a time-independent part. 

Another possibility for achieving a symmetry between the space-time parts 
and the internal parts of the right sides of (3.3) and (3.4) is to generalize them 
to the following product forms: 

iTsUp(x)~'(x)~a(z) -~ iTsUp(x)~(x)~'(z)~a(z) (3.11) 

~,p~(x) '~sx(x)r(z) ~ ~pt~o~(x)'YsX(X)~c(z)~C(z) (3.I2) 

The equations obtained by combining (3.3) with (3.11) and (3.4) with (3.12) 
are, however, generally not separable. The convenient mass separation constants 
generally do not exist and these equations may be difficult to solve. As an 
example to further illustrate this aspect, let us consider the generalization of 
the following one-dimensional Schr6dinger equation: 

0 2 
~x 2 ~1(xi) + ~ , l ( x l )  = V~(xO~,~(x~) (3.13) 

to a two-dimensional one. First, multiply (3.13) by ~2(x2) from the right and 
replace ~2/~x12 by ~2/~x12 + ~2/~x22 to obtain 

+ t~(x~)~b2(x2) + E~a(xl)~2(x2) = Vl(xl)~a(xl)~2(x2) (3.14) 

If  we let xl represent the space time coordinates x and x 2 the internal 
coordinates z in (3.1) and (3.2), the transition from (3.13) to (3.14) is 
analogous to the transition from (3.1) and (3.2) to (3.3) and (3.4). Now the 
interaction term on the right side of (3.14) is not symmetric with respect 
to x 1 and x2. One possibility is to generalize V~(xl) to the symmetric product 
form Vl(xa)V2(x2). which leads to a Schr6dinger equation generally not 
separable into x 1 and x 2 parts, t f  Vl(xl) = Xl 2 and V2(x2) = x22, then the inter- 
action potential is Vl(xl)V2(x2) = x12x22, a form of little interest in atomic 
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physics. Such a generalization to a product form is analogous to the generaliza- 
tions to the product forms given in (3.11) and (3.12). Another possibility is 
to generalize Vl(xl) to the symmetric sum form Vl(Xl) + V2(x2), which leads 
to a Schr6dinger equation separable in xl and x2. In particular, for 
Vl(xx) + V2(x2) = xl 2 + x22, two harmonic oscillator equations, one in x1 and 
the other in x2, are obtained. This last generalization to a sum form is analogous 
to the generalization of (3.3) and (3.4) to (3.5) and (3.6), and this sum type 
of generalization will be adopted. 

So far in this section, the interaction function for the two-quark system has 
been assumed to be a psuedoscalar singlet function Up(x)r(z) generated by 
one of the quark triplet functions, X(x)fa(z). In principle, however, the singlet 
function :r(z) can be associated with, instead of the psuedoscalar function 
Up(x), also a scalar, vector, psuedovector, or tensor function in space-time. 
In addition to the singlet function r(z), there is a nonet function c%a(z) which 
can be associated with Up(x) or any one of the other four mentioned inter- 
action functions in space-time to form an interaction function on the same 
footing as Up(x)'c(z). For instance, if the interaction function is a vector nonet 
function, denoted by Uu(x)wba(z), (3.5) and (3.6) become 

iTuOu~(x)~a(z) + 3bat~(X)~b(z) = "[laU#(x)~(x)~a(z) + (a)ba(g)l~(x)~b(z) (3.15) 

(1"-] - -~ )U#(x ) ( .Oba(Z)  = blvX(X)Tl~X(X)(a)ba(Z) --  Idnfb(Z)~a(Z)U#(x)  (3.16) 

respectively, where/% is a vector interaction parameter and gn a nonet inter- 
action parameter. Upon separation, these two equations become 

i'ruOu~(x ) - mgo~(x) = 7uUu(x)t~(x) (3.17) 

oba~b(Z) + mgv~a(z) = c%a(z)~b(z) (3.18) 

(IS] -- rnv2)U,(x) =/%X (x)3,u~ (x) (3.19) 

(O - mvZ)wba( z ) = Unf~(z)fa(z) (3.20) 

where mgv and my 2 are two new mass separation constants. 
In general terms, each of the two internal interaction functions, the singlet 

interaction function r(z) and the nonet interaction function coba(z), can be 
associated with each of the five interaction functions in space-time, namely, 
the scalar, psuedoscalar, vector, psuedovector, and tensor interaction functions. 
Therefore, one has in principle 2 x 5 = 10 different interaction functions to 
choose from. Furthermore, the general interaction function for the two-quark 
system can in principle consist of a linear combination of the 10 different 
interaction functions mentiened. 

4. Symmetry-Breaking Interactions 

Equations (3.5) and (3.6) are written in tensor form both in space-time and 
in the internal space. They are therefore invariant under Lorentz transformations 
and unitary transformations in the internal space. Further, since the two inter- 
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acting quarks, represented by ~(x)~a(z) and X(X)~a(z) respectively, are by them- 
selves identical, (3.5) and (3.6) also hold when ~(x) is replaced by X(x) and 
vice versa and simultaneously ~a(z) is replaced by ~a(z) and vice versa. Thus, the 
mass separation constants in (3.7)-(3.10) can become in{,ariants under unitary 
transformations in the internal space. The above discussion obviously also holds 
for (3.15), (3.~t6), and (3.17)-(3.20) and for the case with a more general inter- 
action function. 

Such a conclusion appears to disagree with the rather successful proposal 
that the masses of the members of an SU3 multiptet consist of a term invariant 
under SU3 transformations and a term transforming like the eighth component 
of an SU3 octet. Further, there are smaller electromagnetic corrections to 
these masses. Taking these considerations into account, (3.5) is further generalized 
to include two SU 3 symmetry-breaking interaction terms: 

i'Y#OI'L~J(x)~a(z) + Oba~j(x)~b(g) = iTsUp(x)~(x)~a(z) (4.1) 

+ It(z) + Cm(Z)(Xs)J + Cem(z)aCq¢(x)~b(z) 
where 

20  = X3 + Xs/V~ (4.2) 

and the X's are two of the Gell-Mann matrices. Gin(z) is supposed to represent a 
semistrong interaction and Gem(Z ) an electromagnetic interaction in the internal 
space. Since the Gm and Gem terms are assumed to be corrections to the singlet 
term r(z) in (4.1), they are assumed to obey equations similar to (3.10): 

( ~ - m82)Gm(z ) = Ps~a(z )fa(z ) (4.3) 

( ~ - mQZ)aem(Z ) = tlQfa(z ) fa(z  ) (4.4) 

Here,/J8 is a semistrong interaction parameter and/JQ an electromagnetic 
interaction parameter in the internal space. Guided by the Gell-Mann-Okubo 
formula (Okubo, 1962), m s is assumed to be equal to mp and the associated 
Gm(z ) is denoted by Gmp(Z ). Equations (3.6), (3.8), and (3.10) now become 

(D -- ~)Up(X)(7"p8)ba(Z) = IAp~((X)'),sX(X)(Tp8)ba(z) 

- (Uo +Us(Xs)v~)~e(Z)f~(z)Up(x) (4.5) 

oba ~b(z ) + meSa(z) = ( rpS)ba(z )~b (z ) (4.6) 

(<) -- mp2)(rpa)ba(z) = (tto + laS(Xs)ba)~e(z)fe(z) (4.7) 

respectively, where 

(Tp8)ba(Z) = "f(Z) + Gmp(Z)()kg)b a (4.8) 

The internal electromagnetic interaction Gem(Z ) is naturally associated with 
the electromagnetic interaction in space-time. Therefore, a corresponding 
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space-time term for the electromagnetic interaction, 7UAu(x)~a(z), is added to 
the right side of (4.1), where 

[23Au(x) = gc~(x)y~x(x)  (4.9) 

and/Jc~ is of the order of the fine structure constant ~ 137 -1. Since the photon 
mass is zero, mQ in (4.4) is therefore also put equal to zero so that (4.4) 
becomes 

O G . ( z ) :  ~eG(z)~a(z) (4.1 o) 

When the interaction function is Up(x)('rps)ba(z), Up(x) is coupled to 
(Tpa)~a(z) via the mass separation constant mp 2. If the interaction function is 
Uu(x ) ( c%s)ba(z ), where 

(O.)v8)ba(z) = c%a(z) + arnv(Z)()k8)b a (4.11) 

Uu(x) is coupled to (C%s)ba(z) via the mass separation constant my 2. Here, 
Gin(z) -+ Grnt,(z) and m a -> my in (4.3). In the case of the electromagnetic inter- 
action, however, such a mass separation constant vanishes. The internal electro- 
magnetic interaction function QbaGem(Z) is decoupted from the electromagnetic 
interaction function in space-time, the photon function A,(x).  This may be 
associated with the fact that the classical Hamittonian (2.19) can be generalized 
to include Au(x), but not any other type of interaction, at least up to now, so 
that 

09u - A#(x)] ~#  - AU(x)] - m 2 = 0 (4.12) 

Following the prescriptions between (2.19) and (2.21), we obtain 

[i G - A . ( x ) ]  [i0" - AU(x)] - •(x)r(z) = 0 (4.13) 

which replaces (2.21). The remark between (2.22) and (2.23) that all the 
observable quantities in the classical Hamiltonian (2.19) were replaced by 
operators in (2.21) also holds for the transition from (4.12) to (4.13) since 
Au(x) is not an observable quantity. Separation of (4.13) gives (2.24) and 

[iO u - Au(x)l [iO ~ - AU(x)] - m m  2 ~p(x) = 0 (4.14) 

which replaces (2.23). 
Taking the SU 3 symmetry-breaking psuedoscatar singlet and vector nonet 

interaction functions and the photon function, shown between (4.8) and 
(4.9), into account, (4.1) is further generalized to 

i'y"Ol~t~(x)~a(z) + oba~(x)~b(x) = [i'YsUp(x ) + "y"Uls(x ) + "y~A/~(x)] t~(x)~a(z) 

+ [('rp8)ba(z) + (toys)ha(z) + Gem(Z)Qb a] ~(x)~b(z) (4.15) 
Just like (3.6) was generalized to (4.5), (3.16) is similarly generalized to 

(m - < > ) G ( x ) ( ~ a ) d ( z )  = u~2(x)v~(x ) (~8)d(z )  - [m~'o~(z)~a(z) 

+ llafe(z)fc(z)(XS)b a] Uu(x ) (4.1 6) 
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(4.14) together with (4.5) and (4.16) form a set of equations describing the 
influence of a quark triplet with the supposedly known wave function 
X(x)fa(z) upon another with the wave function ~(x)~a(z). Equations (4.15) 
and (4.16) can, like (4.5), be separated. As remarked at the end of Section 3, 
it is in principle possible to suitably include scalar, psuedovector, and tensor 
interaction functions in (4.15) in addition to the psuedoscalar and vector 
interaction functions present in it. 

It may be noted that the vector field U~(x) associated with the internal nonel 
interaction function (co~,8)ba(z) in (4.15)and (4.16) is not a generalized Yang- 
Mills (Yang and Mills, 1954) type of field. In (4.15), the orientations of the 
z a axes in the internal space remain unchanged for different space-time points. 

5. General&ed Bethe-Salpeter L~tuation 

In Sections 3 and 4, the interaction between two quarks was described 
assuming that the wave function of one of the quarks, X(x))a(z), was known. 
This is generally not true. In quantum field theory, the interaction between 
two fermions is described by the Bethe-Salpeter equation (Nambu, 1950; 
Salpeter and Bethe, 1951-). In this investigation only the so-called ladder 
approximation of this equation, namely, 

( i T I P ~ I  -- DTI)(/'TII~Z~#I1 -- t~/II)~2q(XI, XII ) ~- Gv(XI ,  XiI)~Ir2q(Xi, XII ) (5. l )  

will be considered. Here, I and II refer to particles I and II, respectively. 
~q(Xi, xH) is a 16-component wave function in space-time and Gpv(Xi, xii) is 
an interaction function corresponding to a one-particle exchange between the 
two interacting fermions. 

If a psuedoscalar particle, a vector particle, and a photon are exchanged, 
as was indicated in (4.15), Gpv takes the form 

G v ( X i ,  xii)  -- G v  ( Ixi _ xi i  I ) = i2 . ) , s IvSI iGm ( Ixi - xi i  I ) 

+gla~.,'yIl 'tVIII"[Gm(IXI -- XII[ ) + G h ( t X  I -- XiiI)  ] (5 .2)  

where Gpm ( lxt - x i i ]  ) is proportional to a relativistic generalization of the 
Yukawa potential with a mass rnp and an interaction parameter pp, 
Gym (Ix I - Xn[ ) to a similar potential with a mass m,~ and an interaction 
parameter Pv, Gph( tXI -- XtII ) to a.rtX I -- xn1-2 where ~f ~ 137 -1, and g,~ = 6uu 
for u = 0 and guy = -6uv otherwise. 

The generalization of (5.1) to describe the interaction of two quarks begins 
by following a prescription similar to that intervening between (3.2) and (3.3). 
Equation (5.1) is multiplied by an internal two-quark function 2ba(Zi, z1I) 
from the right, m I is replaced by - ~ r ,  rnn by -3~tm O#I is multiplied by 6b a, 
3~i I by 3d e, and Gpv by 6ba6d c. The right side of the resulting equation is, like 
that of (3.3), not symmetric with respect to the space-time and the internal 
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interaction functions. The equation is therefore completed in a way similar to 
that in which (3.3) was completed to become (4.15). The result is 

(iTfUOul6b a + 3gi)(iTnUOuli6a c + ~ii)xlt2g(Xl, Xii)~bcl(zi, ZII) 

= Gpv( IxI - x tI l )qt2g(Xl ,  xII)Zac(zI ,  ZlI) 

+ {7"'(IZ I -- ZIil)gba6cl c + ~'(IZ I -- Zlil)(?kp)ba(Xp)cl c 

+ [Gmp(Iz I  - zIII) + G'mdlz~  - znt)] [(Xs)baaa c + 8ba(X8)a c] 

+ Gem ( Iz I - ziiI )(Qbaacl c + 8baQdc)}~2g(Xi, Xli),~bCl(zi, ZII ) (5.3) 

Here, zl and zii denote the positions of  the two-quark triplets or quarks in the 
internal space. The internal interaction functions are assumed to depend upon 
Izi - zui only in analogy with the case of  the space-time interaction functions 
given in (5.2) and satisfy 

(~ - mpZ)'r'( [zi - ziIl ) =/do ~ (zI --Zll) 

(<)-  mt,2)ta)'(iZl - ziii)= ]An~(Z I - zii ) 

(5.4) 

(5.5) 
2 t 

( ~ -- mp  ) G m p (  lZ I - ZlI[) =/-t88(zI - zIl) (5.6) 

(<) - m o 2 ) G ~ v ( l z i  - znl ) = U86(zi - zii) (5.7) 

G ; m (  IzI - zii [ ) =/2Q~(Z I - zIi ) (5.8) 

Here, <) is to be interpreted as operating on zi - zn instead of  on z as was the 
case in the previous sections. Obviously, (5.4) has its origin in (3.10), (5.5) in 
(3.20), (5.6) in (4.3) with m8 -+ rap, (5.7) in (4.3) with rn a ~ my,  and (5.8) in 
(4.10). The two X8 terms and the two Q terms in (5.3) instead of  one each in 
(4.15) are introduced to assure symmetry  of  (5.3) with respect to the inter- 
change of  the two quarks. Further, X s are the Gell-Mann matrices with s 
running from 0 to 8. )t o is defined here as 

0 

Xo = 1 
0 

(5.9) 

The indices a, b, c, and d each runs from 1 to 3. 
If  one of  the two quarks is replaced by  an antiquark, (5.3) is to be modified 

in the following way. The space-time part o f  (5.3) is modified by  multiplying 
(5.3) by ~'1~'3 from the right (Goldstein, 1953) and by replacing ~I'2q~/D'3 by a 
quark-antiquark space-time wave function lV~qa(Xi,XIi ). The internal part of  
(5.3) is modifed by changing the contravariant indices b and d to covariant ones 
and the covariant indices d to contravariant ones. In this way, the generalized 
Bethe-Salpeter equation in the ladder approximation for a quark-antiquark 
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system reads 

O~I)%a(XI,XlI),-%/ (ZI, ZlI) ( i v u~**llf c a (iTUO/ai~d + a -- b + Oedii) 

= / 2 G p m (  IX I - .  ~ a XIII)T5XItqa(X I ,XII)"/" 5 ~ c (ZI, ZII) 

+ [Gph ( [XI -- XII I ) + Gym ( IxI - x i i l )  ] Tp~%a(XI,XII)')'#Zca(ZI, zII) 

+ {'r'( IZ I -- ZlI[ )obaod c + CO'( [ZI -- ZlI[ ) (Xs)ba@s)2 ' 

+ [amv(tZl -- Znl) + a ; ~ d l z i  - ziil)] [ (M)d ~a  ~ + G~(xo)aq  

+ Gem(lZI - znl)(QbaOde +ObaQS)}q'qa(xI, xn)NJ'(zI, zn) (5.10) 

As remarked at the ends of  Sections 3 and 4, (5.10) can be generalized to 
include scalar, psuedovector, and tensor interactions in space-time. Such an 
equation has been treated in an accompanying paper (Hoh, 1975). 
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6. Transformation to Spherical Coordinates in M3 

It is useful to introduce spherical coordinates and associated spherical 
harmonics in the internal space that are analogous to the ordinary spherical 
coordinates and spherical harmonics in three-dimensional real space. 

Following BEg and Ruegg (1965) closely, the following transformation 
is made: 

z 1 = r sin 0 cos ~ e ~ '  
g 2 = r s i n  0 sin ~ e i~ (6.1) 

z 3 = r cos t9 e is°a 
where 

0 ~ 0 ,  ~ ~ 7r/2, 0 ~  ~Ol, ~2, q03 ~ 2rr 

Taking the complex conjugate of (6.1), one obtains 

zl = r sin O cos ~ e --iel 

z2 = r sin 0 sin ~ e -iv'- 

Z 3 = r cos  i~ e "i~% 

by means of  (6.1) and (6.2), one can write 

O 1 i [ 3 1 3 sin~ 3 
O, = - - ~ =  - e- ~'qsinO cos ~ -- + cosOcos~ 

Oz ~ 2 \ Or r O0 rsinOO~ 

_ 0 _1  [o 0 1 0 cos t  3 
32 =Oz 2 2 e4~°=~°inOsin~ o r + c ° s O s i n ~ r ~  + 30 rsinO3~ 

O t i s [  O 1 ~ £ ~ t  
03 = ~ 3 -  r O0 r cos 00¢3] 

~ e -  3kcoSO~r-  sinO - 

* o3=o  

go) 
r sinOcos~ ~-~ 

r sinO sin 

(6.2) 

(6.3) 

(6.4) 
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A volume element in the internal space M 3 can be written as 

d6z = dzl dzl dz2 dz2 dz3 dz3 = lJ6l dr dO d~ol d~O2 d~o 3 (6.5) 

where the absolute value of  the Jacobian J6 is given by 

t J6l = 8r s cos 0 sin 30 cos ~ sin ~ (6.6) 

Bdg and Ruegg (1965) defined a set o f  harmonic functions for the group 
SU3 as follows: 

ynn'qm2rnaI( O, ~,  gTl, ~ 2 ,  ~03) = 1 ei(m,~oa+m2so; +m3~o3 ) 
sinO 

~+ 1) 2 (6.7) X d ~ a  + )~I+1) /2 ,  ( rn  3 - 2 1 - 1  )/2(2t'q)a[rn, +rn2)/2,(rn ~ - m 2 ) / 2 ( 2 ~ )  

They also pointed out that these functions (6.7) form a complete orthogonal 
set in the intervals specified in (6.2) using I J61/gr s as the density function. 
Here, the set of  harmonic functions is normalized: 

Yn~m2m~(o, ~, ~ ,  ~o2, ~o3)= ei~[ (21+l)(n+2)l~/2Ynm'm~ma27r3 (6.8) 

Where 8 is a phase angle not yet determined and may depend upon rnl, m> ma, 
/, and n. Using the density function [J6l/8r s and observing (6.2), one can 
verify the following orthonormality relation: 

f v m ' t r n ' m ' 3 , v m ~ m ~ m .  ~ I 6 
-~ n'I' ~nI  8r--5-d-- / Z = ~rn~mlr~rn;m(~rn;mr~n'n~i ' i  ( 6 . 9 )  

A function Of Za and z a, with a = 1, 2, and 3, can be expanded as follows: 
n n --  2 I  2 I  2 I  --1 m~ 1 

F(za, z a) = f(r, O, ~, ~1, ~o2, ~3) = ~ 2 • 2 E 
n = 0 2 I  = 0 rn 3 = - - ( n  - 2 I )  m z = - - 2 I  tn~ = - - ( 2 I  --  t rn= t ) 

f;7' m2m'(r)r~im2m'(O, ~, ~,, ~2, ¢3) (6.10) 

One can also show the following completeness relation: 

"r/m:tm*-m3 * (a  t e '  ¢1 ,  qO2, ~03) 
n = O 2 I = O m a = - - ( n - - 2 I )  m 2 = _ m 1 = - - ( 2 1 - - l m , ] )  * r d  v ~ '  "~' 

8r s 

(6 . t l )  

In accordance with Bdg and Ruegg (1965), the following identifications 
with quark theory are made: 

p + q = n, p - q = rn 1 + m 2 + ma,  Y = 1 (_2m 1 + rn 2 + m3),  13 = l ( m  I _ m2 ) 

(6.12) 
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From this equation one obtains 

m l = ~ ( P - q ) + ½ Y + I 3 ,  m 2 = ~ ( P - q ) + ~ Y - 1 3 ,  
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m~ = ~(p  - q)  - Y 

(6.13) 

(6.8) and (6.7) can now be rewritten as follows: 

Pq  = [ ] 1/2 1 
YYII3(O, ~, ~1, ~2, ~3) = Yn7 ~rn~m3 ei ~ (2I  + 1) (p +q + 2) 

27r 3 sin 0 

X "~(p +q + 1)/2 I 
U(p _ q _ 3Y + 6I + 3)/6, (p - q - 3Y - 6I - 3)/6(20)d(p - q)/3 + Y/2, I~ (2~) 

exp {i[~-(p -q )  + ~-Y +/a ]~oi + i [ ~ ( p  - q )  + ~ Y -  I a ] ~  2 + i [ ~ p  - g )  - YI%} (6.14) X 

Similarly, (6.10) can be rewritten as 

F(za ,  z ~) = f ( r ,  O, ~, ~ ,  ¢2, ~3) 
p + q  p + g - -  2l  I I 

p + q = O 2[ = O ( p  - q ) ] 3  - Y = - ( p  + q - 2 / ) (p -q ) / 3+  Y ] 2  = - I  Ia = - I  

f (p ,  g, Y, I, I3, r)rP~3(O, ~, ~1, ¢2, ¢3) (6.15) 

The operator Oa a can be written in the following way: 

~aa ~ ~11 + ~22 + ~33 = ; ~r O-rs 3r3 + lr ½ / ' s  (6.16) 

Where A s is a second-order operator operating on the angles 0, ~, ~a, ~P2, and 
~P3 only. Bdg and Ruegg (1965) have shown that YPq3 is an eigenfunction of 
As: 

As y ~ q =  _. ~ + q ) ~  + q + A]  VPq~j, YZI~ (6.17) 

7. One-Quark Sys tem 

Returning to the case of  free quarks, (2.18) can be solved by assuming that 
• b 

~a(z) = const ka e ' (%z + kbzb) (7.1) 

so that 

mqo = kb kb = kl kl + k2 k2 + k3k 3 (7.2) 

If a box type of boundary conditions in M 3 is assumed, discrete kb and k ~ 
values are obtained. The solution (7.1) does not, however, refer to a single 
quark. The internal wave function of  a single quark is obtained by considering 
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the following expansion of ~a(z) for a one-quark system in spherical harmonics: 

~a(z) = (~l(z), ~(z) ,  ~3(z)) 

p + l q + Yx tT QI(P, q, Y, 1,13, r)Yff + ~l + ~l~ 

where T denotes transposed. Keeping the lowest-order term, associated with 
p = g = Y = I = 13 = 0, only and putting QI = Q2 = Qa = Q, (7.3) becomes 

,__ / s in  O cos ~ ei~l\ T 
1 t 1 - 1  i 

~a(z) = Q(0, 0, 0, O, 0, r) / ° - I  sinOsin~e/~, / (~.4) 

\cosOe '% ] 

which can be considered as the internal wave function of a single free quark. 
~a(z) in (7.3) generally represents states more complex than a single quark; for 
instance, the p =q = 1 term may represent a single quark together with a quark- 
antiquark pair. In obtaining (7.4), (6.14) was used in which 6 was put equal to 
0 for ~2 and ~3 but to ¢r for ~1 This procedure enables (7.4) to take a form 
conforming to (6.1) and leads to the cancelation of the angular parts in the 
derivation of the next equation. Inserting (7.4) into (2.18), and applying (6.4), 
the angular parts cancel out and one obtains 

Q" + (5/r)Q' - (5/rZ)Q + 4mqoQ = 0 (7.5) 

where Q' = OQ/Or. The solution of (7.5) is 

Q = const (1/r2)J3 (2~/~q0r) (7.6) 

where J denotes Bessel's function, mqo can be interpreted as an indeterminate 
mass of  a single free quark. 

If a singlet interaction term, r(z) in (3.10) is included, (2.18) becomes 
(3.8). For simplicity, it will be assumed that the source function in (3.10) can 
be replaced by a point source function #o6(Z). This assumption is analogous to 
the assumption in space-time that the source of an interaction function, corres- 
ponding to r(z), is a point source located at the origin of  a three-dimensional 
real coordinate system in space. Further it wilt be assumed that the mass 
separation constant mp 2 vanishes and that z -+ Iz I = r. Equation (3.10) then 
becomes 

~r ( r )  = #o6 (z) (7.7) 

Making use of  (2.22) and (6.16), (3.8)yields 

1 1 2 
r(r) - t1° ~2 + Ulo ~ + la2 r +/a3 

128 7r 3 
(7.8) 
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where/~ao,/~2, and ~3 are integration constants. In this connection one may note 
that the equation 

OaaT"o(r) = v~f(z)  (7.9) 

has the solution 
t 

v o 1 
to(r) = 32 rr3r h+v~ (7.10) 

where v~ is an integration constant. 
By analogy with Gph (Ix1 - Xu[), discussed after (5.2), one may assume that 

r(r -~ ~ )  ~ ~ so that/12 = 0. 
Equation (7.4) is now substituted into (3.8) and, again, the angular parts 

cancel out leaving a radial equation like (7.5) with mqo replaced by m q o -  7"(r). 
Application of Frobenius' method to this radial equation using (7.8) yields no 
solution when glo 4: 0. If, however,/~0 = 0, one finds that 

Q = const ( 1/r 2)J.~,,/gT4-~-fi(2x/m-q -/~3 r) (7.11 ) 

where mu =/Jo/128 rr 3. Equation (7.11) is a modified form of (7.6) with mq 
not determined. Thus, a single quark cannot be confined by a central potential 
in the internal space of the type (7.8) or (7.10) in the sense that these 
potentials do not confine the radial internal function Q into a certain region 
in the internal space and make it vanish exponentially outside that region. 
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